Time-dependent Propensity Score and Collider-Stratification Bias: an example of beta_2-agonist use and risk of coronary heart disease

1 Department of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
2 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands

Background:

- In observational studies of time-varying exposure and confounders, the use of propensity score (PS) is limited to assigning weights, inverse probability of treatment weighting (IPTW) as in marginal structural models (MSMs).
- Stratification and conditioning on time confounders which are also intermediates can induce collider-stratification bias and adjust away the (indirect) effect of exposure.
- Similar bias could be expected when conditioning/stratification on time-dependent PS.

Objective:

- To explore collider-stratification and confounding bias due to conditioning or stratifying on time-dependent PS in a clinical example on the effect of inhaled short and long-acting beta_2-agonist use (SABA and LABA respectively) on coronary heart disease (CHD).

Methods:

A cohort of patients with an indication for SABA and/or LABA use was extracted from the Netherlands Medical Research University Medical Center Utrecht General Practitioner (GP) Research Network.

- Follow-up began with the first day of diagnosis of bronchitis, asthma, or COPD and ended at the occurrence of CHD, death, unregistration with the general practitioner, or end of the study, whichever occurred first.
- SABA and LABA use and potential confounders were ascertainment on 3 months interval.
- Hazard ratios (HR) were estimated using PS stratification as well as covariate adjustment using PS and compared with those of MSMs in both SABA and LABA use separately.
- In MSMs, censoring was accounted for by including inverse probability of censoring weights (IPCW).

Results:

Table 1. Estimates of Hazard Ratio for CHD Associated With Use of Inhaled SABA and LABA Using Different PS (time-dependent) methods and MSMs With Three Months Interval Approach

<table>
<thead>
<tr>
<th>Methods</th>
<th>SABA Use</th>
<th>LABA Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Crude Estimate</td>
<td>0.90</td>
<td>0.63, 1.28</td>
</tr>
<tr>
<td>PS Stratification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantiles of PS</td>
<td>1.07</td>
<td>0.72, 1.60</td>
</tr>
<tr>
<td>Percentiles of PS</td>
<td>1.15</td>
<td>0.77, 1.71</td>
</tr>
<tr>
<td>Covariate adjustment</td>
<td>1.09</td>
<td>0.74, 1.61</td>
</tr>
<tr>
<td>IPTW†</td>
<td>0.92</td>
<td>0.60, 1.41</td>
</tr>
<tr>
<td>IPTW*</td>
<td>0.86</td>
<td>0.55, 1.34</td>
</tr>
<tr>
<td>Time-varying Cox Model††</td>
<td>1.03</td>
<td>0.69, 1.55</td>
</tr>
</tbody>
</table>

* Stratification based on quantiles of PS in the Cox model
** Stratification based on deciles of PS in the Cox model
*** PS were included as covariate in the Cox model
†† Stabilized treatment weight were used to fit MSMs

Conclusions:

- Regular methods to control for confounding (e.g. PS adjustment) do not adequately control for time-varying confounding.
- In this clinical example of the effects of beta2-agonist use on the risk of CHD, regular methods and methods to control for time-varying confounding (MSM) yielded different effect estimates.
- This could be due to collider-stratification bias or adjustment for intermediate effects.
- Methods such as MSMs is recommended in the presence of time-varying confounder.

References:

Authors’ Disclosure Information

Conflicts of interest: The Department of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, has received unrestricted research funding from the Netherlands Organisation for Health Research and Development (ZonMw), the Dutch Health Insurance Board (CVZ), the Royal Dutch Association for the Advancement of Pharmacy (RVPH), the private-public funded Top Institute Pharmaco (www.toppharma.nl), includes co-funding from universities, government, and industry, the EU Innovative Medicines Initiative (IMI), EU 7th Framework Program (FP7), the Dutch Medicines Evaluation Board, the Dutch Ministry of Health and industry (including SmidtKine, Piasx, and others).”

Acknowledgements and statements: The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) for the Innovative Medicines Initiative (www.imi-europe.eu) under Grant Agreement n° 115584. The research leading to these results was conducted as part of the PROTECT consortium (Pharmacoepidemiological Research on Outcomes of Therapeutics by a European ConsorTium, www.imi-protect.eu) which is a public-private partnership coordinated by the European Medicines Agency.

For more information on the PROTECT project please go to: Web: www.imi-protect.eu E-mail: protect_support@ema.europa.eu