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WP 3.9 Improving Signal Detection in Clinical Trials

Focus on evaluation and comparison of statistical methods
for signal detection in different databases using:

= Adverse Event Data Screening
= Laboratory Data Modelling
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Multiple Testing Problem

e Potential for a multiplicity issue in the
monitoring of clinical trial safety events.

e Multiple tests for several hundred, several
thousand events.

e Challenging issue whether multiplicity
adjustment should be applied or not.
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Real Life Example

In an vaccination clinical trial (1993), in a comparison of the
relative frequencies for each AE, one of the 92 p-values attained
‘statistical significance’ (unadjusted p = 0.016). The AE in
question was unusual high-pitched crying (UHPC), with an
incidence of 6.7% and 2.3% for treatments A and B, respectively.

No medical rationale or biological plausibility seemed apparent for
this unexpected finding. Accordingly, the researchers posited that
the finding was a spurious chance event, a statistical artifact of
drawing inferences from multiple p-values.

Nevertheless, because of concerns about the potential signal
being real due to an unobservable cause, regulators mandated a
follow-up study to prospectively compare the incidence of UHPC
between the two treatments.

In the resulting trial, the incidence of UHPC was similar for the
two groups (A: 5.1%, versus B: 4.3%; p = 0.532), indicating that
the UHPC finding in the initial study was a false discovery. 8
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Another Real Life Example

A safety and immunogenicity trial of a
candidate quadrivalent vaccine against
measles, mumps, rubella and varicella (MMRV)
conducted in 296 healthy toddlers, 12-18

months of age.

Participants were randomly assigned to receive
the quadrivalent MMRV on day 0 (Group 1) or
the trivalent MMR on day O followed by
varicella (V) on day 42 (Group 2).

Mehrotra DV and Heyse JF. (2004). Use of the false discovery rate for evaluating clinical safety data.



/P/RO}CT MMRYV vaccination data

Table 1 Clinical AE counts ('Tier 2' AEs) for the MMRV study
No. BS Adverse experience Group 1 Group 2 Diff (%) Pvalue
(n, =148} (n,=132)
X4 Xz
1 01 Asthenia/fatigue 57 40 8.2 0.1673
2 01 Fever 34 26 3.3 0.5606
3 01 Infection, fungal 2 0 1.4 0.4998
4 01 Infection, viral 3 1 1.3 0.6248
5 01 Malaise 27 20 3.1 0.5248
6 03 Anorexia 7 2 3.2 0.1791
7 03 Candidiasis, oral 2 0 1.4 0.4998
8 03 Constipation 2 0 1.4 0.4998
9 03 Diarrhea 24 10 8.6 0.0289*%
10 03 Gastroenteritis, infectious 3 1 1.3 0.6248
11 03 Nausea 2 7 —4.0 0.0889
12 03 Vomiting 19 19 —-1.6 0.7295
13 05 Lymphadenopathy 3 2 0.5 1.0000
14 06 Dehydration 0 2 —-1.5 0.2214
15 08 Crying 2 0 1.4 0.4998
16 08 Insomnia 2 2 -0.2 1.0000
17 08 Irritability 75 43 18.1 0.0025*%
18 09 Bronchitis 4 1 1.9 0.3746
19 09 Congestion, nasal 4 1 1.9 0.3746
20 09 Congestion, respiratory 1 2 —0.8 0.6033
21 09 Cough 13 8 27 0.4969
22 09 Infection, respiratory, upper 28 20 3.8 0.4308
23 09 Laryngotracheobronchitis 2 1 0.6 1.0000
24 09 Pharyngitis 13 8 27 0.4969
25 09 Rhinorrhea 15 14 —0.5 1.0000
26 08 Sinusitis 3 1 1.3 0.6248
27 09 Tonsillitis 2 1 0.6 1.0000
28 09 Wheezing 3 1 1.3 0.6248
29 10 Bite/sting, non-venomous 4 0 2.7 0.1248
30 10 Eczema 2 0 1.4 0.4998
31 10 Pruritus 2 1 0.6 1.0000
32 10 Rash 13 3 6.5 0.0209*%
33 10 Rash, diaper 6 2 2.5 0.2885
34 10 Rash, measles/rubella-like 8 1 4.6 0.0388*
35 10 Rash, varicella-like 4 2 1.2 0.6872
36 10 Urticaria 0 2 -1.5 0.2214
37 10 Viral exanthema 1 2 -0.8 0.5033
38 11 Conjunctivitis 0 2 -15 0.2214
39 11 Otitis media 18 14 1.6 0.7109
40 11 Otorrhea 2 1 0.6 1.0000
BS: Body system.
*Pvalue = 0.05

Mehrotra DV and Heyse JF. (2004). Use of the false discovery rate for evaluating clinical safety data.
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Signals?
Group 1 Group 2 Diff (%) P-Value
(n=148) (n=132)
Diarrhea 24 10 8.6 0.0289
Irritability 75 43 18.1 0.0025
Rash 13 3 6.5 0.0209
Rash, measles/ 8 1 4.6 0.0388

rubella-like

11
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Guidance on Multiplicity Adjustments

Several guidance documents discuss multiplicity but
there is no clear recommendation on whether to
adjust or not

e ICH E9 - STATISTICAL PRINCIPLES FOR CLINICAL TRIALS
(1999)

e EMA - Points to Consider on Multiplicity Issues in Clinical
Trials (2002)

e CIOMS VI - Management of Safety Information from
Clinical Trials (2005)

12
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ICH E9

The calculation of p-values is sometimes useful as a

'flagging' device applied to a large number of safety
variables.

If hypothesis tests are used, statistical adjustments for
multiplicity to quantify the type I error are appropriate.

ICH E9 - STATISTICAL PRINCIPLES FOR CLINICAL TRIALS (1999)

13
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CPMP - PtC on Multiplicity Issues

where a large number of statistical test procedures is
used to serve as a flagging device to signal a potential
risk ... adjustment for multiplicity is counterproductive
for considerations fo safety

CPMP Points to Consider on Multiplicity Issues in Clinical Trials (2002)

14
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Multiple Testing Problem - Approaches

e Global Error Rate Control

e False Discovey Rate

e Bayesian Hierarchical Models

e Do nothing — Unadjusted Analysis

15
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Global Type I Error Rate Control

e Probability of making one or more false discoveries (type I

error) among all the hypotheses when performing multiple
hypotheses tests.

e Penalise P-values - Low sensitivity

To control the global type 1 error rate
with the Bonferoni procedure at the 5%
level, an analysis of 10 AE would
require a comparison of each

individual p-values against a treshold
of:

0.05/10 = 0.005.

For 2000 analyses, this treshold would
be 5%/2000= 0.000025.

16
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Signals?
Group 1 Group 2 Diff (%) P- Value

(n = (n=132)

148)
Diarrhea 24 10 8.6 0.0289
Irritability 75 43 18.1 0.0025
Rash 13 3 6.5 0.0209
Rash, measles/ 8 1 4.6 0.0388
rubella-like

17

Bonferoni procedure:

0.05/40 = 0.00125.
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Bayesian Hierarchical Models

e Approach that models the complete AE dataset
e Including hierarchical relationships

e Clinical trial with the MMRYV to assess ADR for
varicella component.

« 40 AE were studied (level 1), grouped in 8 “body
systems” (BS) (level 2), that were grouped in one
final “whole body” group (level 3)

SW \\

BS, “ BSg - S,
e SN /‘\

AE1,1---AE1,5 AE21 AE2,7 AE; /Q\EAH,.'..JQ\EH’3

18
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MMRYV vaccination data

The three-level hierarchical model results for the example of Table 1. p(8 = 0) is the probability that the treatment and conirol
have the same AFE rates and p(6 > 0) is the probability that treatment has a higher AE rate. The entries in bold-faced type
correspond to the asterisked entries in Table 1.

Post probability

Post probability

b j Type of AE 0=10 6 >0 b j Type of AE =20 f =0
1 1 Astepia/fatigne 0.762 0.211 9 1 Cough 0.906 0.062
1 2 Fever 0.827 0.122 9 5 Infection, respiratory 0.897 0.083
1 3 Infection, fungal 0.796 0.101 9 6 Bronchitis 0.898 0.047
1 4 Infection, viral 0.813 0.100 9 7 Pharyngitis 0.906 0.061
1 5 Malaise 0.826 0.116 9 8 Rhinorrhea 0.904 0.051
3 1 Anorexia 0.821 0.117 9 9 Sinusitis 0.903 0.051
3 2 Cendisiasis, oral 0.835 0.083 9 10 Tonsillitis 0.905 0.042
3 3 Constipation 0.512 0.101 k 9 11 Wheezing 0.907 0.050
3 4 Diarrhea 0.743 0.231 10 1 Bite/sting 0.859 0.087
3 5 (Gastroenteritis 0.823 0.093 10 2 Eczema 0.860 0.070
3 6 Nausea 0.805 0.050 10 3 Pruritis 0.868 0.062
3 7 Vomiting 0.849 0.076 10 1 Rash 0.784 0.190
5 1 Lymphadenopathy 0.717 0.136 10 5 Rash, diaper 0.852 0.099
6 1 Dehydration 0.666 0.087 10 6 Rash, measles/rub-like 0.836 0.126
8 1 Crying 0.655 0.185 10 7 Rash, varicella-like 0.862 0.076
8 2 Insomma 0.661 0.153 k 10 8 Urticaria 0.852 0.048
8 3 Irritability 0.214 0.780 10 9 Viral exanthema 0.855 0.055
9 1 Bronchitis 0.900 0.059 11 1 Conjunctivitis 0.721 0.079
9 2 Congestion, nasal 0.901 0.058 11 2 Otitis media 0.757 0.102
9 3 Congestion, respiratory 0.596 0.040 11 3 Otorrhea 0.749 0.121

Berry SM, Berry DA. (2001) Accounting for multiplicities in assessing drug safety: a three-level hierarchical 19

mixture model.
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Double False Discovery Rate

e FDR procedures are designed to control the
expected proportion of incorrectly rejected null
hypotheses ("false positives")

e As example: an analysis controlling the FDR at the
5% level identifies 20 signals. We would expect
maximal one of these signals to be false positive.

e Double FDR is a two step adjustment procedure,
first on the higher group level (e.g. SOC), then on
the analysis level (e.g. PT).

20
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Double False Discovery Rate

Table 4 lllustration of the Double FDR adjustment procedure

Body system ID Number of Unadjusted minimum FDR adjusted
AE types Pvalue minimum P value

First level FDR adjustment

MNervous system and psychiatric 3 0.0025
Skin 9 0.0209 0.0771
Digestive system 7 0.0289 0.0771
Body site unspecified 5 0.1673 0.2952
Special senses 3 0.2214 0.2952
Metabolic / immune 1 0.2214 0.2952
Respiratory 11 0.3746 0.4281
Hematologic and ly mphatic 1 1.0000 1.0000

Second level FDR adjustment
Body system: nervous system

and psychiatric
Irritability 0.0025
Crying 0.4998 0.7497
Insomnia 1.0000 1.0000

AE: Adverse experience.

FDR: False discovery rate. Mehrotra DV and Heyse JF. (2004). Use of the false discovery rate for evaluating clinical
safety data. 21



S N
PROTECT

The Alpha-Glucosidase Inhibitors Bayer Research Database

e 72 placebo controlled studies between 1988 and 2007 with >50 pats per trial

e Population:
— 10300 patients on active treatment
— 7800 patients on placebo

e Predominantly Caucasian (75%) , Black (8%), Asian(4%).
e Mean age 56 years (range 18-99).
e Sex distribition: Female patients (44%).

e Main Countries: USA (20%), Great Britain (20%), Germany (17%), Canada
(11%).

e Indications: mostly Type 2 (NIDDM 80%), IGT (14%), Type 1 (IDDM 7%),

22
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Events and Coding

Used for analysis:

— Each event is assigned to either a MedDRA Preferred
Term (PT) or a

- Bayer specific MedDRA Labelling Grouping (MLG).

¢+ MLGs summarize medically similar MedDRA Preferred
Terms to allow consideration of event groupings that are
not as specific as MedDRA Preferred Terms.

+ As it will not be distinguished between event terms and
MLGs in this report, these groupings will be referred to as
event terms in the following
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Bayer’'s MLGS - Examples

MLG: Increase in transaminases

PT: Alanine aminotransferase increased

PT: Aspartate aminotransferase
increased

PT: Hypertransaminasaemia

PT: Transaminases increased

MLG: Jaundice

PT: Cholestasis

PT: Jaundice

PT: Jaundice cholestatic

PT: Jaundice hepatocellular

MLG: Flatulence

e PT: Flatulence

24
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Selected Signal Detection Methods

Method Threshold
No Adjustment o= 0.05
a=0.025
FDE. o= 0.025
o=0.05
Double-FDE. method ol =0.025, 02 =0.05
ol =0.05, o2 =0.10
Bayesian hierarchical 3-stage o=0.025

Note: FDR — False Discovery Rate , MH — Mantel Haenszel, OR — Odds Ratio
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,Gold Standard"

To evaluate the performance of different Signal detection methods
requires the definition of a gold standard, which is a set of known and
unknown safety topics. The performance of the individual methods
will be evaluated by comparing the signal detection results (signal, no
signal) versus the gold standard (ADR, no ADR).

An event is considered to be an ADR, if it is currently listed in the
ADR section of the corresponding CDS with a frequency of rare or
higher.

Rare events are included based on the theoretical chance to create a
signal in an unadjusted analysis given the size of the database (i.e.,
assume frequency to by 1/1000.

26
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Method Ranking

Signal detection methods will be ranked according to their
performance with regard to

e Positive predictive value (PPV), i.e. the proportion of true
signals among all flagged events

e Specificity, i.e. the proportion of not flagged events within all
true non-signals

e Sensitivity, i.e. the proportion of flagged events within all true
sighals

e Negative predictive value (NPV), i.e. the proportion of true
non-signals among all not flagged events

27
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Results - Ranking

Model PPV Specificity Sensitivity NBV
Hierarchical Bayes 0.8889 0.9996 0.5333 0.9974
Double FDR adj.,

alpha2=5% 0.8750 0.55596 0.4667 0.9970
FDR adj., alpha=2.5% 0.8571 0.55996 0.4000 0.9966
FDR adj., alpha=5%, 0.8571 0.9996 0.4000 0.9966
Double FDR adj.,

alpha2=10% 0.7778 0.5552 0.4667 0.9970
No adj., alpha=2.5% 0.5333 0.9974 0.5333 0.9974
No adj., alpha=5% 0.2667 0.9917 0.5333 0.5574

28
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Figure 1 Sensitivity by descending frequency with different multiplicity adjustments
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Comparative time in years to first signal

Model Mean Minimum Median Maximum
Hierarchical Bayes 0.67 0.00 0.00 3.00
Double FDR adj.,

alpha?=5% 1.67 0.00 0.00 10.00
FDR adj., alpha=2.5% 0.43 0.00 0.00 1.00
FDR adj., alpha=5%, 0.43 0.00 0.00 1.00
Double FDR adj.,

alpha2=10% 1.22 0.00 0.00 9.00
No adj., alpha=2.5% 0.22 0.00 0.00 1.00
No adj., alpha=5% 0.00 0.00 0.00 0.00

Note: time m vears to first signal for ezch method was compared to the exliest time when any of the

statistical methods under consideration generated a flag.
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AE Data Modelling - Conclusions

Multiplicity adjustment provides a useful tool to improve the
quality in signal detection in clinical trial data by increasing the
positive predictive value.

The use of multiplicity adjustment needs to be evaluated
against the size of the available clinical trial database.

Bayesian Hierarchical Models can improve the efficiency of
signal detection through borrowing of strength from other
relevant events in the clinical trial dataset. This must be
weighed against the more complex requirements of Bayesian
modelling.

The use of specific MedDRA groupings can further improve
signal detection in clinical trial data.
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