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WP 3.9 Improving Signal Detection in Clinical Trials 

 

Focus on evaluation and comparison of statistical methods 
for signal detection in different databases using:  

 

 Adverse Event Data Screening 

 Laboratory Data Modelling  

 

 



Signal Detection in Clinical Trial AE data 
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Multiple Testing Problem 

• Potential for a multiplicity issue in the 
monitoring of clinical trial safety events. 

• Multiple tests for several hundred, several 
thousand events.  

• Challenging issue whether multiplicity 
adjustment should be applied or not.  
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Real Life Example 

In an vaccination clinical trial (1993), in a comparison of the 
relative frequencies for each AE, one of the 92 p-values attained 
‘statistical significance’ (unadjusted p = 0.016). The AE in 
question was unusual high-pitched crying (UHPC), with an 
incidence of 6.7% and 2.3% for treatments A and B, respectively. 

No medical rationale or biological plausibility seemed apparent for 
this unexpected finding. Accordingly, the researchers posited that 
the finding was a spurious chance event, a statistical artifact of 
drawing inferences from multiple p-values.  

Nevertheless, because of concerns about the potential signal 
being real due to an unobservable cause, regulators mandated a 
follow-up study to prospectively compare the incidence of UHPC 
between the two treatments.  

In the resulting trial, the incidence of UHPC was similar for the 
two groups (A: 5.1%, versus B: 4.3%; p = 0.532), indicating that 
the UHPC finding in the initial study was a false discovery. 
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A safety and immunogenicity trial of a 
candidate quadrivalent vaccine against 
measles, mumps, rubella and varicella (MMRV) 
conducted in 296 healthy toddlers, 12–18 
months of age. 

Participants were randomly assigned to receive 
the quadrivalent MMRV on day 0 (Group 1) or 
the trivalent MMR on day 0 followed by 
varicella (V) on day 42 (Group 2). 
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Another Real Life Example 

Mehrotra DV and Heyse JF. (2004). Use of the false discovery rate for evaluating clinical safety data. 



 MMRV vaccination data 
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Mehrotra DV and Heyse JF. (2004). Use of the false discovery rate for evaluating clinical safety data. 



  Group 1  
(n = 148) 

Group 2 
(n=132) 

Diff (%)  P- Value 

Diarrhea  24 10 8.6 0.0289 

Irritability  75 43 18.1   0.0025 

Rash  13 3 6.5 0.0209 

Rash, measles/ 
rubella-like 

8 1 4.6 0.0388 

Signals? 
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Guidance on Multiplicity Adjustments 

Several guidance documents discuss multiplicity but 

there is no clear recommendation on whether to 

adjust or not  

• ICH E9 - STATISTICAL PRINCIPLES FOR CLINICAL TRIALS 

(1999)  

• EMA - Points to Consider on Multiplicity Issues in Clinical 

Trials (2002) 

• CIOMS VI – Management of Safety Information from 

Clinical Trials (2005) 
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ICH E9 

The calculation of p-values is sometimes useful ... as a 
'flagging' device applied to a large number of safety 
variables. 

If hypothesis tests are used, statistical adjustments for 
multiplicity to quantify the type I error are appropriate. 

                                    ICH E9 - STATISTICAL PRINCIPLES FOR CLINICAL TRIALS (1999)  
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CPMP - PtC on Multiplicity Issues 

where a large number of statistical test procedures is 
used to serve as a flagging device to signal a potential 
risk ... adjustment for multiplicity is counterproductive 
for considerations fo safety. 
 

                                            
CPMP Points to Consider on Multiplicity Issues in Clinical Trials (2002) 
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Multiple Testing Problem - Approaches 

• Global Error Rate Control 

• False Discovey Rate 

• Bayesian Hierarchical Models 

• Do nothing – Unadjusted Analysis 
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Global Type I Error Rate Control 

• Probability of making one or more false discoveries (type I 
error) among all the hypotheses when performing multiple 
hypotheses tests. 

• Penalise P-values - Low sensitivity 
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To control the global type 1 error rate 
with the Bonferoni procedure at the 5% 
level, an analysis of 10 AE would 
require a comparison of  each 
individual p-values against a treshold 
of:                     

  0.05/10 = 0.005. 

 

For 2000 analyses, this treshold would 
be 5%/2000= 0.000025. 
  



  Group 1  
(n = 
148) 

Group 2 
(n=132) 

Diff (%)  P- Value 

Diarrhea  24 10 8.6 0.0289 

Irritability  75 43 18.1   0.0025 

Rash  13 3 6.5 0.0209 

Rash, measles/ 
rubella-like 

8 1 4.6 0.0388 

Signals? 
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Bonferoni procedure:      

             

0.05/40 = 0.00125. 
 



Bayesian Hierarchical Models 

• Approach that models the complete AE dataset 

• Including hierarchical relationships 
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 MMRV vaccination data 

Berry SM, Berry DA. (2001) Accounting for multiplicities in assessing drug safety: a three-level hierarchical 
mixture model. 
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• FDR procedures are designed to control the 
expected proportion of incorrectly rejected null 
hypotheses ("false positives") 

• As example: an analysis controlling the FDR at the 
5% level identifies 20 signals. We would expect 
maximal one of these signals to be false positive. 

• Double FDR is a two step adjustment procedure, 
first on the higher group level (e.g. SOC), then on 
the analysis level (e.g. PT). 
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Double False Discovery Rate 



Double False Discovery Rate 

Mehrotra DV and Heyse JF. (2004). Use of the false discovery rate for evaluating clinical 
safety data. 21 



The Alpha-Glucosidase Inhibitors Bayer Research Database 

• 72 placebo controlled studies between 1988 and 2007 with >50 pats per trial 

• Population: 

– 10300 patients on active treatment 

– 7800 patients on placebo  

• Predominantly Caucasian (75%) , Black (8%), Asian(4%). 

• Mean age 56 years (range 18-99). 

• Sex distribition:  Female patients (44%). 

• Main Countries: USA (20%), Great Britain (20%), Germany (17%), Canada 
(11%). 

• Indications: mostly Type 2 (NIDDM 80%), IGT (14%), Type 1 (IDDM 7%),  
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Events and Coding 

Used for analysis:  

– Each event is assigned to either a MedDRA Preferred 
Term (PT) or a  

– Bayer specific MedDRA Labelling Grouping (MLG).  

 MLGs summarize medically similar MedDRA Preferred 
Terms to allow consideration of event groupings that are 
not as specific as MedDRA Preferred Terms.  

 As it will not be distinguished between event terms and 
MLGs in this report, these groupings will be referred to as 
event terms in the following 
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MLG: Increase in transaminases 

• PT: Alanine aminotransferase increased 

• PT: Aspartate aminotransferase 

increased 

• PT: Hypertransaminasaemia 

• PT: Transaminases increased 

 

 

MLG: Jaundice 

• PT: Cholestasis 

• PT: Jaundice 

• PT: Jaundice cholestatic  

• PT: Jaundice hepatocellular 

 

MLG: Flatulence 

• PT: Flatulence 

 

 

 

Bayer’s MLGS - Examples 



Selected Signal Detection Methods 
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Note: FDR – False Discovery Rate , MH – Mantel Haenszel, OR – Odds Ratio 

Specificity, i.e. the proportion of not flagged events within all true non-signals  



• To evaluate the performance of different Signal detection methods 
requires the definition of a gold standard, which is a set of known and 
unknown safety topics. The performance of the individual methods 
will be evaluated by comparing the signal detection results (signal, no 
signal) versus the gold standard (ADR, no ADR). 

• An event is considered to be an ADR, if it is currently listed in the 
ADR section of the corresponding CDS with a frequency of rare or 
higher. 

• Rare events are included based on the theoretical chance to create a 
signal in an unadjusted analysis given the size of the database (i.e., 
assume frequency to by 1/1000.     
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„Gold Standard“ 



Method Ranking  

Signal detection methods will be ranked according to their 
performance with regard to  

• Positive predictive value (PPV), i.e. the proportion of true 
signals among all flagged events 

• Specificity, i.e. the proportion of not flagged events within all 
true non-signals  

• Sensitivity, i.e. the proportion of flagged events within all true 
signals 

• Negative predictive value (NPV), i.e. the proportion of true 
non-signals among all not flagged events 
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Results - Ranking 
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Comparative time in years to first signal 
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AE Data Modelling - Conclusions 

• Multiplicity adjustment provides a useful tool to improve the 
quality in signal detection in clinical trial data by increasing the 
positive predictive value.  

• The use of multiplicity adjustment needs to be evaluated 
against the size of the available clinical trial database.  

• Bayesian Hierarchical Models can improve the efficiency of 
signal detection through borrowing of strength from other 
relevant events in the clinical trial dataset. This must be 
weighed against the more complex requirements of Bayesian 
modelling.  

• The use of specific MedDRA groupings can further improve 
signal detection in clinical trial data.  
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